TS

nfenmziicn b owr baznsss.

i

SORTING, MINIMAL FEEDBACK SETS AND HAMILTON @
PATHS IN TOURNAMENTS &

STANFORD UNIV., CA

TOIETEROTION

Bpproved b

15 DEC 88

U.S. DEPARTMENT OF COMMERCE
National Technical Information Service

19970821 060 7

e
-

December 1988 Report No. STAN-CS-88-1239

HETEER I

PB96-143317

Sorting, Minimal Feedback Sets and Hamilton Paths in
Tournaments

by

Amotz Bar-Noy and Joseph Naor

Department of Computer Science

Stanford University
Stanford, California 94305

-

Mdem
National Tochrvest indurenation
Vegnia 22161
; % -
, P /
. i /
/ 4 ~ /

TTTTT Y (A3 - CATON F e 5 Palh

SN (NIRRT SRR A G Wy SR

Form AppvOved

KREPORT DOCUMENTATICN PAGE OB N 07045

£rp Date Jun)

Ta REPORT SECURITY CLASHIFICATION

1D RESTRICTIVE MASKINGS

T2 SECURITY CLASSIFICATION AUTHORITY

3 OITRSUTICMAVARASILITY GF REFPORT
approved for public release:

0 DECLASSFICATION/ DOWNGRADING SCHEDULE unlimited distribution

ot

AT

STAN-CS-88-1239

3 SERFORMING ORGANIZATION REPORT NUMBER(S) §. MOMITORING ORGARIZATION REFCRT RUMETA(S)

B N e

68 NAME OF PERFORMING ORGANIZATION

COMPUTER SCIENCE DEPARTMENT

6d OFFICE SYMBOL 78. NANE CF MORITCRING CRGARIATION
(If apptcais)

6. ADDRESS (Cry. State, and 2i7 Code)

STANFORD UNIVERSITY
STANFORD, CA 94305

7d. ADORESS (City, State, and ¥ Code)

82 NAME OF FUNDING/ SPONSQRING
QRGANIZATION ‘
ONR

8d OFFICE SYMEBON 9. PROCURIMENT INSTRUMEINT 1DENTIFICATION NUMEBER
i spoiicadia)
N0O014-88-K-0166

8¢. ADORESS (City, State, ind 217 Cocle)

10. SCURCE OF PUNDING NUMBERS
PRCGRAM PROIECT TASK
ELEMINT NO. | NO. NO.

11 TITLE (Inclucle Security Classificatron)
SORTING, MINIMAL FEEDBACK

SETS AND HAMILTON PATHS IN TOURNAMENTS

12 PERSONAL AUTHOR(S)

Amotz Bar-Noy and Joseph Naor

S0l w
138 TYPE OF REPORT 13 TIME COVERED 14. DATE GF REPORY (Year, AdOneh, Dey) |13. PAGE COuUNT
FROM 10 DECEMBER 15,1938 20

16 SUPPLEMENTARY NOTATION

V7 COSAT: COOES

18 SUDBIECT TERMS (Continue On reverse o necessyry andl iantily By biock mumbs

FIELD GROUP SUS-GROU?P

HNPrNSS A previons

9 ABSTRACT (Continue On reverss if necossary and Kdantify by Block number)

\We present a general inethod for translating ~orting hy comparisons algonthms to
Algoritims that compute a Hanulton path in a tournament. The translatioa is based
on the relation hetween minimial feedback sets and Hamilton paths in tournaments. We
jprove that there is a one to one cotemspondence et ween the st of minimal feedback sets
Al the set of Hamilton paths. [n the comparison model, all the tradeoffs for sorting
hetween the number of processors and the nuiher of rounds hold when a Hamiiton path
s computed. For the CRCWV modet. with O(1) processors. we show the following:(i)
Two paths in a tourrament can he etz in Ofloglogn) time (Valiant's slgedithm
{Va]): (i) a Hamilton path can be computed in Oflog ») 1ime (Cole's algorithm). This

Utlog® n) using O{n?) procemors.

algorithm for computing a Hamlinn path whoee running time was

22a NAME OF RESPONSIBLE INDIVIOUAL
Jeffrey Ullman

20 OISTRIBUTION/AVAILABILITY OF ABSTRACT 2%. ABSTRACT SECURITY CLASSFICATION
O unciassieeomunumited O same as oot [one usERs

220. TELEPHONE
(415) 723-2273

DD FORM 1473, samar

83 APR edition may be used until exhausted. TV BICAT
All other editron are obsolete. :

TG QTALYTY INGPECTED 3

i
L.
{ .

Sorting, Minimal Feedback Sets and Hamilton Paths in

Tournaments

Amot: Bar-Noy *® Joseph Naort

Computer Science Departinent.
Stanford University,
Stanford. CA 91305.

Decembér 15, 1988

Abstract

: P
We present a general method for translating sorting by comparisons algorithms to

algorithms that compute a Hamilton path in a tournament. The translation is b;sed
on the relation between minimal feedback sets and Hamilton paths in tournaiments. We
prove that there is a one to one correspondence hetween the set of minimal feedback sets
and the set of Hamilton paths. In the comparison model, all the tradeoffs for sorting
between the number of processors and the number of rounds hold when a Hamilton path
is computed. For the CRCW model. with O(n) processors, we show the following:(i)
Two paths in a tournament can be merged in O(loglogn) time (Valiant's algorithm
{¥a)); (ii) a Hamilton path can be computed in O(log n) time (Cole’s algorithm). This
improves a previous algorithm for computing a Hamilton path-whose running tine was-

* O(log? n) using O(n?) prov.essors. ARG

*Supported in part by a Weizmann fellowship and by contract ONR N00014-88-K-0166.
!Supported by contract ONR N00014-88-K-0166.

1 Introduction

A tournament T = (V. D) (|V] = n) is a directed graph in which every pair of vertices is
joined by a directed edge. It can be viewed as a complete graph whose edges are given an
orientation. A Hamilton path in a graph is a simple path that contains all the vertices, and
each vertex appears exactly once. A well known theorem states that there is a Hamilton

path in every tournament [Re, Be].

In this paper we investigate the complexity of computing 2 Hamilton path in a tourna-
ment and other problems related to it. Our methodology relies on the intimate relationship
that exists between llamilton paths and minimal feedback sets in tournaments, and their
connection to sorting algorithms. Sorting by comparicons may be viewed as computing a
Hamilton path in a transitive (acyclic) tournament. The purpose of this paper is to show
the opposite direction. namely how sorting algorithms can be generalized to compute a

Hamilton path in an arbitrary tournament.

Sorting by comparisons is a well investigated problem, perhaps the most in computer
science. We show how to exploit the wealth of results on it to design parallel and sequential

algorithms for arbitrary tournaments.

Parallel algorithms to compute a Hamilton path in a tournament have appeared in [Na,
So), but were designed by ad hoc principles. The key idea in computing the Hamilton path
in both papers is the following: in every tournament there exists a vertex (separator) whose
indegree and outdegrce are bounded from below by |V|/4; this gives a recursive formulation
of the problem with only a logarithmic number of steps. The difficulty with this approach is
that the best bound known for finding a separator requires O(n?) processors. Ramachandran
[Ra)] showed using adversary arguments that a lower bound on the number of edges whose

orientation must be known in order to find a separator is Q(n?).
In analogy to sorting, we define two additional problems on tournaments:

o Merging two paths such that the relative order of the vertices in the original paths

remains after the merge.

o k-selection, e.g. finding the kth vertex in the Hamilton path in a transitive tourna-
ment, is generalized to finding a vertex which is the kth in some Hamilton path in an

arbitrary tournament.

We now present a summary of our method. A minimal edge feedback set F in a directed
graph G = (V, D) is a set of edges such that G’ = (V, D — F) is acyclic, and F is minimal
with respect to containment. We prove that there is a one to one correspondence between
the set of minima! feedback sets and the set of Hamilton paths in an arbitrary tournament,
and show how a minimal feedback set can generate a Hamilton path and vice versa. We also

show that an edge in a transitive tournament whose oriertation is known by implication.
cannot appear in the Hamilton path. Assume now that the input to a sorting algorithm is
not a transitive tournament but rather any arbitrary tournament. If a minimal feedback
is computed for each round of comparisons and its orientation flipped. namely the sorting
algorithm is “cheated”, then the Hamilton path computed by the sorting algorithm will also
be a Hamilton path for the original input. Intuitively, this happens because the edges on
which we “cheated™ are actually implications. These notions are formalized and proved. and
they result in a general method for translating any sorting (or sorting related) algorithn to

an algorithm that computes a Hamilton path.

There are two known proofs for the existence of Hamilton paths in tournaments. One
proof is Redei’s proof [Re], and the other is the aforementioned separator theorem. In view
of our results, the first proof corresponds to insertion-sort, whereas the second to quick-sort.
In fact, our results imply that the known sequential sorting algorithms also compute a

Hamilton path in an arbitrary tournament.

The equivalence between sorting and computing a Hamilton path holds both in the
comparison model and in PRAMS. Valiant’s comparison model {Va] can be easily generalized
to arbitrary tournaments. In this model we prove that the complexity of computing a
Hamilton path in an arbitrary tournament and in a transitive one is the same. It follows
that all the lower bounds, upper bounds and processor-time tradeoffs for sorting, apply also
when computing a Hamilton path in an arbitrary tournament. These bouads and tradeofls
have been proved in a series of papers, [AAl, AA2, AAV, Al. AV, BHe, BHo, P]. Hell
and Rosenfeld [HR] have also considered the sequential complexity of algorithms in the

comparison model for computing generalized paths in tournaments.

The situation with implementing our translation method in the PRAM model is more
complex. The difficulty is that it requires the computation of a minimal feedback edge set
in a directed graph. It is not known whether an NC algorithm exists for this problem.
We consider two PRAM sorting algorithims, and give for these special cases a non trivial
procedure that computes a minimal feedback set in constant time. The algorithms are
Cole’s merge-sort [Co] and Valiant’s merging algorithm [Va), and our results are in the
CRCW model. Hence, a Hamilton path can be computed in O(log n) time, and two paths
of length n can be nierged in O(loglog n) time; both a.lgorithms use O(n) proccssl)rs.

These two algorithms achieve an optimal speed (up to a constant factor) with respect
- to the sequential complexity. Notice that in our case the number of processors is linear in
the number of vertices and not edges. This result is interesting by itself.

Ovur results also imply an O(n log n) sequential algorithm for computing a Hamilton path
in an arbitrary tournament. As we already have mentioned, merge-sort will also output a

Hamilton path for an arbitrary tournament. This bonnd also follows from Redei’s proof [Rel.
but only when appropriate data structures are used. It can be proved that Batcher’s sorting
network [Ba], also compuies a Hamilton path when the input is an arbitrary tournament.
However. it is not obvious whether the AKS sorting network [AKS] can be adapted to
tournaments. This motivates the search for a sorting network whose depth is less than
O(log?n) and also computes Hamilton paths. It would also imply better bounds for EREW

algorithms.

As for the k-selection problem, it is easy to show a lower bound of Q(log n/loglogn)
time for any PRAM n.odel even in the case of transitive tournaments. Hence. the best
strategy (up to a factor of O(loglogn) would be first to compute a Hamilton path, and
then solve the k-selection problem. On the other hand, in the comparison model, the result

of [AKSS] implies an O(loglog n) upper bound.

2 Terminology and preliminaries

Let T = (V, E) denote a tournament, that is a complete graph whose edges are oriented.
Let the cardinality of the vertex set be denoted by n. If an edge is oriented from v to w,
then we say that v is smaller than w (1w is greater than v) and denote it either by v < w,
or by v — w. A path v, vy,..., vk is a sequence of vertices where v; < vi4y and v; # v; for
0<i#j<k Acycleisapath where vy = 1. Il vertex v precedes vertex w in a path P,
then v < w with respect to the path P or r is below w (w is above ©). The first and last

vertices in the path are called bottom and top respectively.

A tournament is transitive if and only if it is acyclic. An implication in a transitive
tournament is an edge whose orientation is implied by the orientation of other edges in the

tournament, namely to avoid cycles.

Let P and Q be two paths in an arbitrary tournament and let R be the result of merging
P and Q. Then this merge has the following property: if ¢ < w with respect to P (Q). then

also v < w with respect to R.

An edge feedback set F in a directed graph (¢ = (V. D) is a set of edges such that
G' = (V,D - F) is acyclic. Computing such a set of minimum cardinality is NP-complete
[GJ], whereas computing a minimal such set with respect to containment can be easily done
in polynomial time by a greedy algorithm. .\n easy property of minimal feedback sets is
that the graph resulting from inserting any edge of F in G’ is cyclic.

The graph G = (V, W, Q) is called a complete path directed bipartite graph (abbreviated
CPB) if Q contains all the edges between V" and 11", and the graph induced by V (W) is a
directed Hamilton path.

3 Hamilton paths, minimal feedback sets and the compar-

1son model

In this section we show how Hamilton paths and minimal feedback sets are related to each
other in tournaments. We first extend the parallel compariscn model to tournaments. This
model was first introduced by Valiant [Va] for the purpose of analvzing sorting algorithms:
only comparisons are taken into account in it, whereas internal processor computation and
communication are not charged for. The structure of an algorithm in this model is the
following: in each round a set of element pairs are compared until the output is known.
The aim of an algorithm is to minimize both the number of rounds and the total number

of comparisons.

We extend this model for tournaments in the natural way. The answer to a comparison is
the orientation of an edge in the tournament. Hence, in the beginning we have a tournament
whose edge orientation is unknown, and at each round, we ask for the orientation of a set
of edges. The algorithm proceeds till the induced graph of the known edges contains the
solution. Let f(p.F) denote the minimum number of comparisons needed to compute a
function f in & rounds and p processors. As we already have mentioned, sorting can be

viewed as computing a Hamilton path in a transitive tournament.
The next easy lemma is used by our main theorem that follows immediately.

Lemma 3.1 Let ¢ = 1 — v be an edge in a transitive tournament whose direction is known

by implication. Then € cannot appear on the Hamilton path.

Proof: If the orientation of e is known by implication then there exists an element w such

that u — w and w — v. Hence, € cannot appear on the Hamilton path. |

Theorem 3.1 Let A be an algorithm that computes a Hamilton path in a transitive tournament
with complexity H(p.k). Then there exists an algorithm B that computes a Hamilton path in

a non transitive tournament 1" with the same complexity I (p. /).

Proof: Let Qy,...,Q; be disjoint sets of directed edges and let F = FyUF;U---U Fi be
a set with the following properties: '

1. F;,CQ..

2. Fy is a minimal feedback set in the graph induced by Q,.

3. Inductively, F; is a minimal feedback set in the graph induced by (Q, -~ R)U(Q; -

F2)U---U{Qi1 = Fi1)UQ,.

It is easy to verify that for every i, F* = Fy U---U F; is a minimal feedback in the graph
induced by Q, U---UQ;.

Denote by ~F; the set of edges of F; such that the orientation of each edge in Fj is
flipped and let Q! = Q, — F; U ~F;. Define A(Ry,...,R;) to be the set of comparisons in
round i+ L of algorithm A under the assumption that the comparisons in the first / rounds
were Ry.. ... R,. With these notations, the set of comparisons of Algorithm B, @y, .. . Qk,

will be derived from algorithm A in the following way:

1. Q) — A(9)

2. Qi1 — A(QY,-. . Q)
First we show that Algorithm B is well defined by proving that H; = Q1 U ---U Qi_,isa
legal input to round i of algorithm A. It is easy to verify that f, is a legal input if it is
acyclic. Assume to the contrary that there is a cycle ¢ in it. The edges of H; are of two
types: edges of the minimal feedback set F* that were flipped, or unflipped edges. By the
definition of a minimal feedback set, for every edge e = (u — v) € F*, there is a path p. of
unflipped =dges from v to n. Now, exchange every edge e € c that belongs to Fi by p. and

get as a result a cycle of edges that were not flipped. If that cycle is not simple, it contains

a simple cycle as a subgraph, hence contradicting F* being a minimal feedback set.

Now that Algorithm B is well defined, assume to the contrary that its output p is not
a Hamilton path in T. The path p is not a Hamilton path only if it contains edges whose
orientation was flipped, namely edges that belong to F, the minimal feedback set. This
cannot happen as the edges of F are implications in the graph induced by Hy, and therefore

cannot appear on the Hamilton path by the lemma 3.1. 1}

Corollary 3.1 Let A be an algorithm that merges two paths in a transitive tournament with
complexity M (p, k). Then there exists an algorithm B that merges two paths in a non transitive

tournament with the same complexity. 1

Another problem that was extensively studied in transitive tournaments is the k-selection
problem: find an element larger than k — 1 elements and smaller than n — k élements. This
problem can be generalized to non transitive tournaments in two ways. The first one is
to find an element in the tournament (if one exists) whose indegree is exactly equal to k.

It can be shown that the minimum number of comparisons needed to determine such an

clement is Q(1?) [Ra], and therefore the running time cannot be polylogarithmic with a -

linear number of processors.

A more relaxed definition is to find an element v in the tournament such that v is the
k-th element in some Hamilton path. We show that the complexity of this problem is

equivalent to the complexity of k-selection in the transitive case.

oy P

o i RS N L

Corollary 3.2 Let A be an algorithm that solves the k-selection problem in transitive tour-
naments with complexity S(p.k). Then there exists an algorithm B that solves the k-selection

problem in non transitive tournaments with the same complexity.

Proof: Algorithm A is translated into B in th~ same way as in Theorem 3.1. The corollary
follows from the observation that any k-selection algorithm can be viewed as a step in a

sorting algorithm. §

It follows from Corollary 3.2 that the k-selection algorithm of [AKSS] in the comparison
model whose time complexity is O(loglogn) with a linear number of processors, can be
applied to arbitrary tournaments as well. On the other hand, in the PRAM model, we have
the following theorem that implies that the best strategy for k-selection, (up to a factor of
O(loglog n)), would be first to compute a Hamilton path.

Theorem 3.2 There is a lower bound of Q(logn/loglogn) on the complexity of the k-

selection problem for transitive tournaments in the PRAM model.

Proof: This follows easiiy from the lower bound of [Bea] on compnting the exclusive OR of
a bit vector, as it also implies a lower bound of Q(logn/ loglog n) on sorting. Assume there
was a k-selection algorithm whose time complexity was better than O(logn). Invoking this
algorithm n times simultaneously for k = 1,2, ..., n would imply a better bound for sorting.

Hence, a contradiction. ||

Another consequence of Theorem 3.1 is the following relation between Hamilton paths
and minimal feedback sets.

Theorem 3.3 Let P be the set of all Hamilton paths in a tournament T and let F be the set

of all minimal feedback sets in a tournament T'. There is a one to one correspondence between

P and F.

Proof: We first show how a minimal feedback set F can be computed from agiven Hamilton
path p. For every pair of vertices v, w such that v precedes w in the path, add the edge
(v,w) to F if it is oriented from w to v. Obviously, F is a minimal feedback set and two
different paths cannot generate the same minimal feedback set. We now prove the other
direction. Let F be a given minimal feedback set in a tournament 7' and let T’ be the
tournament in which the orientation of the edges in F were flipped. By Theorem 3.1, a
Hamilton path in 7" is also a Hamilton path in T. let F} and F, be two minimal feedback
sets and let v — w be an edge in F; and not in F;. Fj and F; cannot generate the same
path as T} will contain v «— w and T} will contain v — w. |}

It follows from Theorem 3.3 that all the results on the cardinality of P [Mo] apply to
F as well. A criterion to decide whether there is a path in a tournament that starts at a
given vertex v and ends at some other given vertex w also follows from Theorem 3.3. Let

in, (out,) be the set of incoming (outcoming) edees into v (out of v).

Corollary 3.3 A necessary and sufficient condition for the existence of a Hamilton path from

v to w is the existence of a minimal feedback set containing both in, and out,,

Proof: Assume that such a minimal feedback set exists. After its edges are flipped, v
becomes a source and w a sink and hence, according to Theorem 3.1, there is a Hamilton
path from v tc w. If a Hamilton path from v to w exists, then in, and out, belong to its

corresponding minimal feedback set. (Same construction as in Theorem 3.2). |

4 The CRCW model

In this section we exhibit algorithms for sorting and merging in an arbitrary tournament
that are based on Theorem 3.1. 'The complexity of these algorithms matches the complexity

of the corresponding algorithms in transitive tournaments.

In the first subsection we present Algorithm MFS that in O(1) time finds a minimal
feedback set in a CPB graph G = (V,W, E). In the other two subsections, we show how to
translate certain algorithms for sorting and merging in transitive tournaments, to algorithms
in arbitrary tournaments by cailing MFS as a subroutine. It turns out that computing a
minimal feedback set in our special ceses, reduces to computing it in a CPB graph. We
shall prove that in each case, the feedback set computed by repeated calls to Algorithm
MFS is indeed the minimal feedback set required by Theorem 3.1. The algorithms chosen
are (they both use O(n) processors):

Merging: Valiant’s merging algorithm [Va] with O(loglogn) time complexity.

Sorting: Merge-Sort [Co] with O(log n) time complexity.

4.1 Finding the minimal feedback set

Algorithm MFS invokes the two procedures MAXINDEX and MAXPREFIX. We now
present them and prove that each can be implemented in O(1) time.

Procedure MAXINDEX():
input: A binary sequence A = ay....,ar; € processors.

output: The maximum index k. 1 < k < ¢, such that ax = 1.

-1

Lemma 4.1 MAXINDEX can be implemented in the CRCW model in O(1) time

Proof: It is well known that computing; the OR (respectively, AND) of a binary sequence
of longth (with processors takes O(1) time in the CRCW model.
First we show how to compute MAXINDEX in O(1) time with 2 processors. Each
element of A such that a; = 1 computes b; = max;¢;<ea(j) in O(1) time. (This is possible
as each a; has (vrocessors available). If b; = 1. then there exists an index Jj > t such that
a; = 1, and therefore i cannct be the desired answer. In this cise we set a; = 0 and clearly,
ouly one value remains equal to 1. The index of this value is the answer.
Now we show how to compute MAXINDEX in O(1) time in the CRCW model with
oaly £ processors. (For clarity, assume that v/Z is an integer.)
1. Divide the { elements of the sequence into v/ blocks where each contains /€ consec-
utive items.

2. For 1 < i < V0, let ¢; denote the OR of the i-tk block.

3. Let k be the output of Procedure MAXINDEX when the input is the vectorey, .. ., /e
This takes O(1) time as there are (processors and the vector is of length /7.

4. Let k' be the output of Procedure MAXINDEX when the input is the k-th block.

This takes O(1) time as there are ¢ processors and the block is of length V/Z.

5. The output is k.
1

Procedure MAXPREFIX(A, B):
input: A sequence A = ay,...,a¢ of integers; €2 processors.

output: A sequence B = by,...,b of integers such that for every i, 1 < i < (.

b = .
i = mmax {ax}

Lemma 4.2 MAXPREFIX can be implemented in the CRCW model in O(1) time..

Proof: First cbnstr.uct in O(1) time a matrix M = {m, ;}1<ijce where my; = 1 iff
a; > a;,ori=j. Eacli row i calls a variation of procedure MAXINDEX and computes
in O(1) time: the minimum index j in the subrow Mii41,- -, M such that m; ; = 0 and
Miip1 = -=mj1 =1 Foreveryk,1 <k <iorj<hk<Eset m;; = 0. If now
m;; = 1, then a; > a; and for each k, i < k < j, it is also known that a; > a.

Therefore, it now remains for each a; to find the minimal index § such that m;; = 1.
Again, this can be done in time O(1) by calling a variation of procedure MAXINDEX for

each column of the matrix M. |

v W v W v W
Uy @ o Yy Uy o oty Uy @ oty
. . * L] L J
. *® * L]
[. . ll’)'r 1w,
* * L]
* * L]
[. vy Vi
[] [)
- . L]
wj . wj wj
g . . .
* Y . L0
t vy . . .
& A L] * * *
k4
&) e ° U V) e o Wy vy wy
g a. Cycle of type 1 b. Cycle of type 2 ¢. Cycle of type 3
3 Ui, Wy, Uiy Uiy Wy, ..o, Wy, Uy Vi, Wiy Wi, Ve Yy
% .
§ Figure 1: The three types of cycles.

We are now ready to present Algorithm MFS.

Algorithm MFS:

Input: A complete path bipartite graph G = (V,W,Q); V = vy,...,v,; W = wy,...,wy
O(r? 4+ rs) processors.

O L SO e P P g

Output: A minimal feedback set F in G.

Forall i,1<i<r:

1. Define a() as follows:
(a) v; > w,, then a(i) = s
(b) else, if v; < wy, then a(i) = 0;
(c) otherwise, let a(i) be the maximum index j such that w; < v < w;p
(1<j<s-1).

Let b(i) be the ma:dmixm value among {a{1),...,a(i)}.

g

3. Forall j, 1 < j < b(i): if v; < w; then add the edge v; — w; to F.

~, . ‘ . . X
N M . i ; .
~ Tl 7. . ;
~ N ~. - P / =~ . LV - .
N I e G L T S

i

Bt

e Ta Rt v ers T mxe ehtve N b L s S e Acitate S 4B A i e A 1o b A st e+ et sl e« R AL

Lemma 4.3 The set F computed by Algorithm MFS is a minimal feedback set in Q.

Proof: F is a minimal feedback set if Q' = Q — F is acyclic and if adding an edge of }' to

Q' generates a cycle.

Assume to the contrary that there is a cvcle in Q' and suppose that the cycle is one of
the following three types:

1. v, wy, v, ..., v (Figure la);

2. v, wj,...,w,, v, (Figure 1b);

3. v, wy, ..., wy vy, vy (Figure c).
We now show that in the three above cases b(1) > j and this leads us to a contradiction.
because in Step 3 of algorithm MFS, edge v; —» w; € F.

1. The edge w; — vy is in Q; therefore the maximality of a(i') implies that a(i’) 2 j

and consequently, b(#) > b(i') > a(t') 2 j.

2. The edge wjr — v; is in Q; therefore a(i) > j' which implies that b(i) > j' > j.

3. The edge wjr — v;r is in Q: therefore b(7) > b(i') > a(i') 2 j' > j.

Now let ¢ be an arbitrary cycle and let v; be its highest vertex in V. The successor of t;

in ¢ belongs to W, and denote it by w;. We show that there are three possible cases, and

each implies the existence of one of the above three types of cycles.

If w; is the highest vertex of ¢ in W then its successor in ¢ is vy € V. It follows that
i’ < i (from v; being the highest) and hence v;,w;,vyr,...,v; is a cycle in Q' of type (1).
Otherwise, let w;. be the highest vertex of ¢ in W for some j’ > j. Denote the successor of
wjs in € by vy € V for ¢ < i. There are two cases. If i = i then in @', v;,wj,...,wjr, v; is

a cycle of type (2). Else. ' < i and v;,wj,...,wj, v, ..., is a cycle in Q' of type (3).
To complete the proof, we have to show that if an edge v; — w; € F is added to Q.
then a cycle is gencrated. This follows from the following two facts:
Fact 1: The edge w,(;) — v; is always an edge in Q' as long as a(i) > 0.
Fact 2: if v; — w; € F then j < b(3). V
If j < a(i), then v, w;, ..., w,(), v is a cycle (type (2)). Otherwise, by the above two
facts a(i) < j < b(i). If j = b(i), then there exists i’ < i such that a(') = b(i). By Fact 1,
wyi) — v € Q' and v, wj, vy, ..., v; is a cycle (type (1)). Else, j < b(i) and again, there
exists ' < 1 such that a(i’) = b(i) > j and by Fact 1 wy) — vy € Q'. It follows that

Uiy Wjy .« oy Whi)s Uity « - -, Ui IS a cycle (type (3)). B

10

:

7

Lemma 4.4 Algorithm MFS can be computed in time ()(1).

Proof: It is casy to sec how step Ic can be computed with the hielp of procedure MAXIN-
DEX with rs processors. Hence, it takes time O(1) by Lemma 4.2, Step 2 calls Procedure
MAXPREFIX with r? processors and can also be computed in time (1) by Leinma 4.3.
Obviously, the rest of the algorithm can be computed in time O(1) . §

4.2 Merging

In this subsection we show how Valiant's [Va] merging algorithm can be modified to a
CRCW algorithm that merges two paths in a tournament. We elaborate on its description
for two reasons: (i) to simplify the proof of Theorem 4.1; (ii) to the best of our knowledge,
a detailed description of Valiant's algorithm in the PRAM model does not exist. The
algorithm uses a linear number of processors (linear in the length of both paths) and its
time complexity remains O(loglogn) (n is the length of X, the longer path). Borodin and
Hopcroft [BH] proved a lower bound of (loglog n) on the complexity of merging two paths
and hence, our results are tight. Hereafter, denote by X = x;,...,z, and Y = p,...,ym

the two paths to be merged. We omit ceiling and floor for clarity.

Valiant's algorithm employvs a divide-and-conquer method: in O(1) time, merging two
paths is divided into merging many pairs of subpaths from X and Y. where in each pair,
the length of the subpath belonging to X is /u. Then. in O(1) time, the paths produced .
by merging the pairs are concatenated to output the desired merge. The basic step of the
recursion is when n is a constant and then, the merge is completed by performing all possible

comparisons. The time complexity O(loglogn) is the solution of the recursive equation:
e T{a)=0(1) ; o=0(1) ;
o T'(n) =T(/n)+ Of1).

We now explain how the divide-and-conquer is achieved. Each of the two paths, X and
Y. is divided into subpaths whose lengths are a square root of their original length. The
top of every subpath is called its leader, and denote by LX and LY the set of leaders in X

and Y respectively. We may sometimes refer to LN and LY also as paths.

The first step of comparisons in the algorithm is between all the leaders of LY with all
the leaders of LY. (This can be done in one step as /nm < n+ m.) At this point, for each
leader y € LY, there are two successive leaders 2/ < z € LX, such that y > 2’ and y < .
This pair of leaders is uniquely defined in the case of a transitive tournament and can be
computed in time O{1). The exact place in X where y is eventually inserted. will be called
the insertion point of y. Now, for two consecutive leaders in LY, ¥ < y, there is a subpath
LX(y)in LX and a subpath Y (y) in Y, such that each vertex in these subpaths is smaller

11

LX LY Y X LX Y

,,,,,

LX(y) T~] X(o) T~

Y(w) ¥(z)

a. After merging LX and LY b. After merging LX and Y

Figure 2: Proof of Theorem 4.1

than y and greater than y’ (Figure 2a).

The second step of comparisons in the algorithm is performed between all the vertices
in LX(y) and Y(y) for each leader y € LY. After this step, the insertion point in Y of each
leader z € LX is known, namely there are two successive vertices in Y, ¥’ < y, such that
z > ¥ and z < y. Again, this pair of vertices is uniquely defined in the case of a transitive
tournament and can be computed in time O(1). Now for two consecutive leaders in LX,
z' < z, there is a subpath X(z)in X and a subpath Y(z) in Y, such that each vertex in
these subpaths is smaller than z and greater than z’ (Figure 2b).

Now the subpaths can be merged simultaneously. For every leader z € LX, the algo-
rithm merges recursively the paths X(z) and Y(z) into the path Z(z). After the recursion

is completed, z (z’) can be inserted above (below) Z(z). ‘

Thus, by merging /n pairs of subpaths and then concatenating them through the leaders
of X, the desired merge is achieved. 4

The comparisons steps that precede the recursive calls in Valiant’s algorithm incur two .
problems in an arbitrary tournament. A leader y € LY (z € LX) may have several insertion
points in LX (Y); furthermore, if y’ < y (z’ < z) then the insertion point of y' () is not
necessarily smaller than that of y (z). ‘

To overcome these problems, we compute a minimal feedback set in the graph induced
by the comparisons, as suggested by Theorem 3.1. Whenever a set of vertices is compared,

12

a minimal feedback set 1s computed and the orientation of its edges is flipped. In all cases,
the minimal feedback set is either the output of Algorithm MFS, or the union of outputs

of different calls to Algorithm MFS. There are four cases summarized below:

1) The base case of the recursion: Here, n is a constant, and the mininal feedback set

is the output of Algorithm MFS computed on the whole graph.

2) The first round of comparisons before the recursive calls: Here, the leaders of
LX and LY are compared and again, the minimal feedback set is the output of
Algorithm MFS.

3) The second round of comparisons before the recursive calls: The graph induced
by these comparisons is a union of CPB graphs and Algorithm MFS is invoked for
ecach CPB graph. The minimal feedback set is the union of the minimal feedback sets
computed for each CPB graph.

4) The rounds during the recursive calls: The structure of the comparison graph is
the same as in case (3) and the minimal feedback set is the union of the minimal
feedback sets computed for each CPB graph.

Theorem 4.1 The modification of Valiant's merge algorithm according to Theorem 3.1 merges

two paths in an arbitrary tournament.

Proof: We prove it by induction on k, the depth of the recursion. When k = 1 (case 1),
namely the length of one of the merged paths is a constaut. the correctness follows as
Algorithm MFS computes a minimal feedback set (Lemma 4.3). Assume that the theorem
is true when the recursion depth is less than k.

In the first step of comparisons (case 2), the leaders of X and Y are compared. It
follows again from lemma 4.3 that a minimal feedback set is indced computed. Hence, the
picture depicted by Figure 2a is valid. Now assume that the second round of comparisons
before the recursive calls took place (case 3) and assume also that the union of minimal
feedback sets computed for edge disjoint subgraphs is not a feedback set. To disprove this
last assumption, it is enough to show for every cycle that all of its edges belong to the same

subgraph. We prove the following claim:

Claim: For each leader y € LY, if a vertex from LX(y) (or Y(y)) takes part in a cycle,
then that cycle is completely contained in LX(y)UY (y).

Proof of the claim: Construct the following graph H: for each leader y € LY associate a
vertex f(y) in H which is the contraction of LX(y) and Y(y) e.g., a vertex in H can be
viewed as a set of “old” vertices. Let a and b be two vertices in H; the edge a — b exists if
before the contraction, there was an edge oriented from a vertex in the set a to a vertex in

.the set b.

13

Notice that the leader y is the enly vertex in f(y) that was compared to vertices in
LX(y") for any leader v' < y. The way the segments in LX were chosen implies that yis
greater than all the vertices in LX(y') and clearly y is greater than all the vertices in Y ().
Hence, H is well defined and is isomorphic to a path. The correctness of the claim follows

immediat-ly. 8

In the rounds during the recursion (case 4), similar arguments to the above hold. The
analogous claim is that for each leader r € LY, if a vertex from X' (x) {or Y (z)) takes part
in a cycle, then that cycle is completely contained in LX(y)UY (y). Therefore, it is enough
to compute a minimal feedback set in each CPB graph. |

Theorem 4.2 The time complexity of the modified algorithm is O(loglog n) when O(n) pro-

cessors are available.

Proof: Define T(n,m) to be the time complexity of the modified algorithm. By Lemma
4.4, Algorithm MFS can be implemented in time O(1) if the number of available processors
is O(r? + rs), where r and s denote the lengths of the input paths. We need to show that

whenever Algorithm MFS is invoked there is a sufficient number of processors available.

If n is a constant, the claim follows fromn the fact that O(n 4 m) = Q(nm). When LY
and LY are compared, the claim follows from the inequality /nm < n + m.

If " a;, = /n, then " a? < n. Therefore, there are enough processors for the second
step of comparisons that precedes the recursive call. Each subpath Y(y) from Y that is

merged with a leaders from LX, receives O(a? 4+ ay/m) processors.

For the simultaneous recursive calls there are enough processors, as each submerge of

two paths of length n’ and m’ gets O(»’ + m’) processors.

Clearly, the rest of the algorithm can be implemented in constant time same as the

transitive case. Hence the recursive equation is:
T(n,m) = T(v/n,m') +¢,

for some constant ¢. The solution of the above equality is O(loglogn). 1

4.3 Sorting

In this subsection we show how a path in a tournament can be found in the CRCW model
in O(logn) time using O(n) processors. We rely on Cole’s merge-sort [Co] algorithm and
compute a minimal feedback set in O(1) time for each round of comparisons. We shall
give only an outline of Cole’s algorithm, and elaborate on the steps where comparisous are
performed. We refer the reader to the description of Cole’s algorithm in [GR] as our outline
depends on it and uses its terminology.

14

ontput to the parent — reduce(ral,) (<))

val, ~— merge(X,Y), with the help of old val,

a sorted sequence a sorted sequence
from the left child from the right child
(4Yl') (}’i)

Figure 3: The local action in an internal node v in the tree.

In the previous subsection, the merging algorithm implies a sorting algorithm whose
complexity is O(log nloglogn). To improve the complexity to O(logn), Cole showed how
to pipeline the merging steps. Let T be the complete binary tree that describes the standard
merge-sort algorithm; a typical node v in T merges two lists X and Y when both X and ¥’
are sorted. The novelty of Cole's algorithm is that node v starts processing the lists .\ and

Y before they are sorted. Namely, at the ith step, two lists X; and Y; are merged, where

‘X is a sorted sample of X, and Y; is a sorted sample of Y. This merge can be computed

in constant time if the results of the 7 — 1st step are known.

For the sake of simplicity. assume that n is a power of 2. Let T, be the subtree rooted
at v and list, be the list of elements stored initially at the leaves of T,. Let val, be the
current list associated with node v of the tree. The sequence val, will always be a sorted
subsequence of list,, and will double its size in each round. We say that a node is complete
if and only if val, = list,. Let us now describe what happens in a typical internal node ¢
of the tree during the course of the algorithm (Figure 3).

In the ith step, node v receives from its left child and right child sequences X; and Y¥;
respectively. It merges the two sequences Lo a sorted sequence val, with the help of the old
val,. If v is incomplete, then it sends every fourth element of val, to its parent. During
the first step after v becomes complete. every second element is sent up, whereas in the
step after that, every element is sent up. The sequence Z; sent by v to its parent is called

reduce(val,).

The algorithm begins when all the leaves send their value to their parents. A node

e o

XN(IY N2 N X4 X)) X(B) X(D

Y(Y@ Y@ Y@ Y)Y Y()
Z =(21,22,73,24, 25, 26)
X(7) = the set of elements of .X' lying between the i — Ith and ith elements of Z.
Y (i) = the set of elements of ¥ lying between the ¢ — 1th and ith elements of Z.
merge(X,Y) = merge(X(1),Y(1))---merge(X(7),Y (7))

Figure 4: Merging X' and Y with the help of a good sampler Z.

terminates two steps after it became complete, and the algorithm ends when the root
becomes complete. 1t follows from the way reduce(val,) is defined, that two rounds after
v became complete, its parent becomes complete. Therefore, the algorithm takes O(logn)
rounds of internal computation in the nodes of the tree. In order to achieve the desired

complexity, Cole showed how to implement each such round in constant time.

We now need some notations. The rank of an element z in a sequence X, renk(z, X), is
the number of elements in X preceding 2. The cross rank from X to Y, denoted by R[X,Y],
is the function for which R[X,Y](z) = rank(z,Y) for each z € X. A sorted sequence X is
a good sampler of the sorted sequence Y if and only if, between any &k + 1 adjacent elements
of {—oc}UX U{oc} there are at most 2k + 1 elements of Y. In our case, assume that k = 1,
i.e., between any two element of Y there are at most th!'ee elements of X'. Note that it is

always true that reduce(X) is a good sampler of X.

The motivation behind these notations is as follows. The cross rank R[X,Y] (R[Y, X])
enables us to merge the sorted sequences X and Y in time O(1). In this sense, the merge of
two séquencés and their cross ranks, are equivalent. Qur description relies heavily on this
fact. It is also easy to merge in constant time two sorted sequences X and Y with the help

of a sequence Z which is a good sampler of both (Figure 4).

The basic property of the algorithm that entails its correctness is well demonstrated by
the following invariant preserved at each step:

16

ST s s e, S T

S

T, S B,

Main invariant: if each X, is a good sampler of X,4;. and each Y} is a good sampler of

“+1 then each Z; is a good sampler of Z;4,.
In terms of cross ranks, the merge of X;4q and Y,4 is performed in three steps:

1. The four cross ranks: R[X;,Yis1], R[Ys, Xis1), R[Xip1,Yi) and R[Yis1, Xi] are com-
puted with the help of R[X;, Xi4+1] and R[Y;, Yina].

2. The two cross ranks: R[X;41,Yis1] and R[Y;41,Xi41) are computed with the help of
the cross ranks of the previous step. (As stated before, this is equivalent to merging
Xi41 and Yiyy).

3. The cross rank R[Zi, Ziy;]) = Rlreduce(X; U Y;),reduce(Xiy1 U Yis1)] is computed
with the help of the previous calculated cross ranks.

The three steps can be implemented in O(1) time with O(|Xi41] + |Yi41]) processors. The
reason is that the good sampling property insures us that in each CPB graph, at least one
of the paths is of length at most three.

We now explain how to modify the above algorithm according to Theorem 3.1 so that
it computes a Hamilton path in an arbitrary tournament. Whenever a set of vertices is
compared, a minimal feedback set is computed and the orientation of its edges is flipped.
Each stage of comparisons can be decomposed to edge disjoint CPB graphs and in each one
a minimal feedback set is computed by invoking Algorithin MFS. The union of the minimal
feedback sets computed in each CPB graph will be a minimal feedback set in the graph
induced by the set of comparisons.

Theorem 4.3 The modification of Cole's sort algorithm according to Theorem 3.1 finds a

Hamilton path in an arbitrary tournament.

Proof: For arguments similar to those in the proof of the merging algorithm, it follows
that the union of the outputs of the calls for algorithm MFS in each node of the tree T, is

a minimal feedback set in the graph induced by the comparisons performed at that node.

The theorem follows from the next claim proved by induction on (k,i), where k is the
height of the tree and ¢ is the current step.

o In the ith step, in a tree of height k, the algorithm computes a minimal feedback set.

o The sequence sent by v, the root of this tree, in the ith step is consistent with the
previous sequences sent by v. Namely, if val, contains the relation z < y for z,y €
list,, then in all previous steps, val, never contained the relation y > z.

The induction holds clearly for k = 1, namely the leaves. Now let T” be a tree of height
k, let v be its root and let i be the current step. We prove the first part of the inductive
claim by showing that there cannot be a cycle after the edges of the minimal feedback set

17

in 7', computed in the ith step, are flipped. Let X and Y be the sequences that v received
from its left and right children respectively. It follows from the induction assumption on
the height of the tree that any cycle contained completely in X or in Y was handled by the
children of v. On the other hand, a cvele containing vertices from both X" and Y could only
be generated by v. Assume there is such a cycle and w.l.o.g. it contains an edge between
vertices 4,0 € X where a precedes b with respect to X. Because of the second part of the

induction hypothesis, this edge is a — b. However, such cycles are detected by Algorithm
MFS.

After flipping the minimal feedback set, the graph induced by list, contains an instapce
of Cole’s merge-sort algorithm. Therefore, the correctness of the second claim follows from

the correctness of Cole's algorithm. §
Theorem 4.4 The time complexity of the modified algorithm is O(log n).

Proof: A more detailed inspect.on of the algorithm shows that in each CPB graph at least
one of the paths is of length at most three. In Cole’s algorithm each node in the tree gets
O(1Xix1] + [Yig1]) processors. this number is sufficient to calculate the calls for algorithm
MFS. 1

Acknowledgment

We would like to thank Eli Gafni, Nati Linial and Moni Naor for valuable discussions.

18

N Y G e S B PR SRT

References

[At\i]

[AA2]

[AAV]

[AKS]

[AKSS]

(Al]

[AV]

(Ba]

(Be]
[Bea]

(BHe]

[BHo]

[Co]

(GJ]

[GR]

N. Alon and Y. Azar. Sorting, approrimate sorting, and searching in rounds, Siam
J. Disc. Math., Vol. 1, No. 3, pp. 269-280 (19S8).

N. Alon and Y. Azar, The average complezity of dcterministic and randomized par-
allel comparison sorting algorithms, Proceedings 28th Annual IEEE Foundations
of Computer Science, Los Angeles, CA (1987), pp. 489-498; also: Siam J. Comput.,
to appear.

N. Alon, Y. Azar and U. Vishkin, Tight complexity bounds for parallel comparison

sorting, Proceedings 27th Annual IEEE Foundations of Computer Science, Toronto,
Ontario, Canada (1986), pp. 502-510;

M. Ajtai, J. Komlos and E. Szemeredi, Sorting in clogn parallel steps, Combina-
torica 3 (1) (1983] pp. 1-19.

M. Ajtai et al., Deterministic selection in O(loglogn) parallel time, Proceedings
18th Annual ACM Symposium on Theory of Computing. Berkeley, CA, (1986), pp.
188-195.

N. Alon, Eigenvalues. geometric ezpanders, sorting in rounds and Ramsey theory,
Combinatorica, 6 (3) (1986) pp. 207-219.

Y. Azar and U. Vishkin, Tight comparison bounds on the complezity of parallel
sorting, Siam J. Comput., Vol. 3, (1987), pp. -1538-46.1. ‘

K. E. Batcher, Sorting networks and their applications, in Proc. AFIPS Spring
Joint Comput. Conf., Vol. 32, April 1968, pp. 307-314.

C. Berge, Graphs and Hypergraphs, North Holland Publishing Company, 1973.

P. Beame, Limits on the power of concurrent-write parallel machines, Proceedings
ACM 18th Symposium on Theory of Computing, 1986, pp. 169-176.

B. Bollobas and P. Hell, Sorting and graphs, in Graphs and Orders, 1. Rival, ed.,
D. Reidel, Boston, MA, 1985, pp. 169-184.

A. Borodin and J. Hopcroft, Routing, merging and sorting on parallel models of
computation, J. of Computers Systems and Sciences ...

Richard Cole, Parallel Merge Sort, Siam J. Comput., Vél. 17, No. 4. pp. 770-785
(1988). '

M. Garey and D. S. Johuson, Computers and Intractability, W. H. Freeman, San

Francisco, 1979.

A. Gitbhons and W. Rytter, Efficient parallel algorithms, Cambridge University
Press, 1988.

19

[HR]

[Mo]
[Na]

[P]

[Ra]

[Re]
[So]

[Va)

P. Hell and M. Rosenfeld. The complerity of finding generalized paths in tourna-
ments, J. of Algorithms, Vol. |, pp. 303-309 (1983).

J. W. Moon, Topics on tournaments, llolt, Rinehart and Winston Inc., 1968.

Joseph Naor, Two parallel alyorithms in graph theory, Technical Report CS-86-6,

Dept. of Computer Science, Hebrew University, June 1986

N. Pippenger, Sorting and selecting in rounds. Siam J. Comput. 16 (1987) 1032-
1038. ‘

V. Ramachandran, Private communication.
L. Redei, Ein kombinatorischer satz, Acta Litt. Sci. Szeged, 7 (1934) pp. 39-43.

D. Soroker, Fast parallei algorithins for finding hamilton paths and cycles in a
tournament, Journal of Algorithms, 9, (1988) 276-286.

L. G. Valiant, Parailelism in Comparison problems, Siém J. Comput. 4 (1975)
348-355.

20

AT Sty Vg

T PR M TR Y A Bl e 5

12

